
Introduction to Rescue

Simulation

2022 WORKSHOP ON AI AND SIMULATION FOR NATURAL DISASTER MANAGEMENT

JULY 17, 2022

1

Agenda

➢ RoboCup

➢ Natural Disaster Overview

➢ Rescue Agent Simulator

➢ Scenario Editor

➢ Simulator Structure

➢ Agent Behavior

➢ Agent Communication

2

RoboCup

3

What is RoboCup?

➢ An international effort to foster Artificial Intelligence and Robotics research by

providing standard problems where wide range of technologies can be

integrated and examined

➢ Managed by RoboCup Federation since 1996

➢ Involve more than 40 countries and more than 3000 participants

➢ Working Groups dedicated to explore the application of AI and Robotics in

different socially significant domains

4

Rescue Simulation Working Group

➢ Created in 1999 focused on promoting research and development in the socially

significant domain of natural disaster

➢ Use of AI and Robotics to support planning and decision-making of rescue

teams in a post-disaster urban setting

5
Robot Virtual Robot Agent Simulation

Rescue Agent Simulation

➢ Develop a simulator able to represent natural disaster scenarios to support

disaster response planning

➢ Evaluate response plans elaborated by policy-makers to act in real natural

disaster scenarios

➢ Organize competitions to stimulate the exchange of ideas and experience
between researchers and practitioners

6

Natural Disaster Overview

7

Natural Disaster

➢ Natural disasters are major adverse

events

➢ Natural disasters impact the

infrastructure and environment of the

affected areas causing

❑ loss of shelter

❑ food shortage

❑ spread of infectious diseases

➢ Effective monitoring for immediate post

disaster response help reduce

❑ economic losses

❑ fatalities

Source: National Geographic Source: TipTopTens

8

https://www.nationalgeographic.com/content/dam/news/2017/08/book-talk-quakeland/2-booktalk-quakeland.ngsversion.1503721837365.adapt.1900.1.jpg
http://www.tiptoptens.com/wp-content/uploads/2011/03/2008-Sichuan-earthquake.jpg

Natural Disaster
Year Country Magnitude Death toll

2010 Haiti 7.0 316,000

1976 China 7.5 242,769

2004 Indonesia 9.1 227,898

1920 China 7.8 200,000

1923 Japan 7.9 142,800

1948 Turkmenistan 7.3 110,000

2008 China 7.9 87,587

2005 Pakistan 7.6 86,000

1908 Italy 7.2 72,000

1970 Peru 7.9 70,000

9

Porto Príncipe, 2010

China, 2008
9

10 deadliest earthquakes since 1900

Source: United States Geological Survey (USGS)

Deadliest Earthquakes on Record

https://www.infoplease.com/world/earthquakes/deadliest-earthquakes-record

Disaster Management

10

Response Phase

Objectives

➢ Save lives

➢ Prevent new disasters

➢ Collect data

➢ Short-/Long-term planning

11

Response Phase

Objectives

➢ Save lives

➢ Prevent new disasters

➢ Collect data

➢ Short-/Long-term planning

Limitations

➢ Limited resources

➢ Incomplete information

➢ Real-time decision-making

➢ Large number of people involved

➢ Heterogeneity

12

Rescue Agent Simulator
OVERVIEW

13

Rescue Agent Simulation Platform

➢ A computer simulation platform that can represent natural disaster scenarios

➢ Large multiagent simulation system

➢ Composed of multiple components

➢ Kernel coordinates all components

14

Simulator Description

Traffic Agents’ movement

Collapse Buildings’ structural damage and

blockade creation

Clear Manage blockade removal

Ignition Ignite fires randomly

Fire Fire spread and extinction

Miscellaneous Human damage and buriedness

Rescue Agent Simulation Platform

Environment

Kobe, Japan

15

Rescue Agent Simulation Platform

Ambulance Team

Fire Brigade

Police Force

Civilians

16

Ambulance Centre

Fire Station

Police Office

Refuge / Shelter

Rescue Agent Simulation Platform

Environment

17

Rescue Agent Simulation Platform

Environment

18

Rescue Agent Simulation Platform

Environment

19

Perceive Perceive

Rescue Agent Simulation Platform
❑ Belief

• Environment
• Agents

❑ Decision Processes

Environment

20

Perceive Perceive

Rescue Agent Simulation Platform
❑ Belief

• Environment
• Agents

❑ Decision Processes

Act

Environment

21

Perceive Perceive

Act
Proactive
ReactiveAct
Proactive
Reactive

Rescue Agent Simulation Platform
❑ Belief

• Environment
• Agents

❑ Decision Processes

Perceive

Communicate

Perceive

Act

Act

Proactive
Reactive

Environment

22

Environment

➢ Partially Observable

❑ Agents have a limited range of perception

❑ They have complete knowledge of the map

➢ Dynamic

❑ The state of the disaster changes over time, e.g., the civilian loses health over time

➢ Stochastic

❑ The initial condition and the evolution of the disaster is randomly defined

23

Communication

➢ Voice vs Radio

❑ Agents can communicate directly with other agents in a short-range distance

❑ Agents communicate broadcast radio to subscribed agents

➢ Restricted

❑ The communication channels have a limited bandwidth to communicate

➢ Unreliable

❑ Messages may be dropped

24

Architecture

25

Viewers

SimulatorsKernel

Agents

Domain Objects

Initialization

26

(1)
Initial Conditions

(2)

(2)

(3)

Viewers

SimulatorsKernel

Agents

Domain Objects

Simulation Dynamics

27

Sense

Information

(1)

Viewers

SimulatorsKernel

Agents

Domain Objects

Simulation Dynamics

28

Sense

Information

(1)

Viewers

SimulatorsKernel

Agents

Domain Objects

Command

Actions (2)

Simulation Dynamics

29

Sense

Information

(1)

Viewers

SimulatorsKernel

Agents

Domain Objects

Command

Actions (2)

Command

Actions (3)

Simulation Dynamics

30

Sense

Information

(1)

Viewers

SimulatorsKernel

Agents

Domain Objects

Command

Actions (2)

Command

Actions (3)

Simulation

Results (4)

Simulation Dynamics

31

Sense

Information

(1)

Viewers

SimulatorsKernel

Agents

Domain Objects

Command

Actions (2)

Command

Actions (3)

Simulation

Results (4)

(5)

Simulation Dynamics

32

Sense

Information

(1)

Viewers

SimulatorsKernel

Agents

Domain Objects

Command

Actions (2)

Command

Actions (3)

Simulation

Results (4)

(5)

Simulation

Results (6)

Simulation Dynamics

33

Sense

Information

(1)

Viewers

SimulatorsKernel

Agents

Domain Objects

Command

Actions (2)

Command

Actions (3)

Simulation

Results (4)

(5)

Simulation

Results (6)

Update

Notification (7)

Simulation Dynamics

34

Sense

Information

(1)

Viewers

SimulatorsKernel

Agents

Domain Objects

Command

Actions (2)

Command

Actions (3)

Simulation

Results (4)

(5)

Simulation

Results (6)

Update

Notification (7)

Rescue Agent Simulator
INSTALLATION AND EXECUTION

35

Rescue Agent Simulator Installation

➢ Software – Prerequisites

❑ Git

❑ OpenJDK Java 17

❑ Gradle

➢ Download

$ git clone https://github.com/roborescue/rcrs-server.git

➢ Compile

$ cd rcrs-server

$./gradlew completeBuild

36

Sample Agent Installation

➢ Software – Prerequisites

❑ Git

❑ OpenJDK Java 17

❑ Gradle

➢ Download

$ git clone https://github.com/roborescue/rcrs-sample-agent-java.git

➢ Compile

$ cd rcrs-sample-agent-java

$./gradlew clean build

37

Rescue Agent Simulator Execution

start.sh [options]

-m <scenariodir> Scenario directory

-l <logdir> Log directory

-s Add date and time in the log directory

-t <teamname> Name of the team

➢ Example

$ cd rcrs-server/scripts

$./start.sh –m ../maps/kobe/map –c ../maps/kobe/config

38

Control Panel

39

Sample Agent Execution

➢ Run using Gradle

$ cd rcrs-sample-agent-java

$./gradlew launch

40

Simulation Run

41

Simulation Run

42

Civilian

Police Force

Fire Brigade

Refuge

Ambulance

Burned

Buildings

Buildings on

Fire

Building

Contained Fire

Blockage

Fire Station Police

Station

Ambulance

Center

➢ Score Calculation

onde,

➢ P is the number of civilians alive

➢ H is the sum of the health index of the remaining civilians

➢ Hint is the sum of the health index of all civilians

➢ B is the sum of the area of each building * factor

➢ Bmax is the sum of the area of all buildings

If Fieryness = 0

factor = 1

If Fieryness = 1, 4 or 5

factor = 0,66

If Fieryness = 2 or 6

factor = 0,33

If Fieryness = 3, 7 or 8

factor = 0

Default Score

43

Folder Structure

/build Java classes

/docs simulator documentation

/jars simulator JAR files (generated after compilation)

/lib libraries used by the simulator

/log scenario execution logs

/maps scenarios

/modules simulator’ source-code

44

Hands-on

1. Install the Rescue simulator and SampleAgent

2. Execute the Rescue simulator using the Berlin scenario (folder ../maps/berlin)

3. Execute the SampleAgent team

4. Alter

I. number of cycles (timesteps) from 250 to 200

II. no radio communication

5. Execute the Rescue simulator and SampleAgent team in the Berlin scenario

45

Scenario Editor

46

Scenario Editor Execution

➢ Run using Gradle

$ cd rcrs-server

$./gradlew scenarioEditor

47

Scenario Editor Execution

➢ Select Load

❑ Choose the maps/berlin/map folder

➢ Select Remove all button

➢ Select Place agents to add agents

➢ Select Place Refuge to add refuges

➢ Select Place fire station, Place

ambulance centre and Place police

station to add Fire Station, Ambulance
Centre and Police Station respectively

48

Scenario Configuration

49

➢ Configuration files are placed in the config folder under the scenario folder.

Example: maps/berlin/config

➢ Relevant configuration files and parameters are

❑ common.cfg

▪ random.seed: 1

▪ kernel.host: localhost

▪ kernel.port: 27931

❑ kernel.cfg

▪ kernel.timesteps: 300

▪ kernel.startup.connect-time: 180000

Scenario Configuration

50

➢ Continue

❑ ignition.cfg

▪ ignition.random.lambda: 0.05

❑ perception.cfg

▪ perception.los.max_distance: 30000

❑ resq-fire.cfg

▪ fire.tank.maximum: 7500

▪ fire.tank.refill_rate: 500

▪ fire.extinguish.max_distance: 50000

Scenario Configuration

51

➢ Continue

❑ clear.cfg

▪ clear.repair.rate: 20

▪ clear.repair.distance: 20000

▪ clear.repair.rad: 2000

❑ collapse.cfg

▪ collapse.create-road-blackages: true

▪ collapse.floor.height: 5

▪ collapse.wall-extent.min: 0.5

▪ collapse.wall-extent.max: 1.0

Scenario Configuration

52

➢ Continue

❑ commsXXXX.cfg

▪ comms.channels.count: 3

▪ comms.channels.max.platoon: 2

▪ comms.channels.max.centre: 2

▪ comms.channels.0.type: voice

▪ comms.channels.0.range: 30000

▪ comms.channels.0.messages.size: 256

▪ comms.channels.0.messages.max: 1

▪ comms.channels.0.noise.input.dropout.use: yes

▪ comms.channels.0.noise.input.dropout.p: 0.1

Scenario Configuration

53

➢ Continue

❑ commsXXXX.cfg

▪ comms.channels.1.type: radio

▪ comms.channels.1.bandwidth: 3000

▪ comms.channels.1.noise.input.failure.use: yes

▪ comms.channels.1.noise.input.failure.p: 0.2

▪ comms.channels.1.noise.input.dropout.use: yes

▪ comms.channels.1.noise.input.dropout.p: 0.2

Hands-on

1. Copy the Berlin scenario to a folder with another name

2. Using the Scenario Editor clean the all elements in the map and add

❑ 100 civilians

❑ 10 PoliceForces, FireBrigades, AmbulanceTeams

❑ 1 PoliceStation, FireStation, AmbulanceCentre

❑ 4 Refuges with capacity of 3

3. Alter in the scenario configuration

I. number of cycles (timesteps) from 250 to 200

II. no radio communication

4. Execute the Rescue simulator and SampleAgent team in the created scenario

54

Simulator Structure

55

Simulator Structure

❑ Class Hierarchy

❑ Objects

▪ World

▪ Building

▪ Road

▪ Blockade

56

Class Hierarchy
Entity

AbstractEntity

StandardEntity

Human Blockade Area

Property

AbstractProperty

EdgeListPropertyEntityRefListProperty

Edge

AmbulanceTeam

Civilian

FireBrigade

PoliceForce

RoadBuilding

AmbulanceCentre

Refuge

FireStation

PoliceOffice
57

Concrete Class

Abstract Class

Class Hierarchy
Components

AbstractComponent

AbstractAgent

StandardAgent StandardWorldModel

WorldModel

AbstractWorldModel

DefaultWorldModel

Agent

58

Concrete Class

Abstract Class

AmbulanceTeam

FireBrigade

PoliceForce

AmbulanceCentre

FireStation

PoliceOffice

Object - World

➢ Represent the simulation environment

➢ Composed of a set of entities, like Buildings, Roads and Humans

➢ The Road and Building entities form a connected graph

➢ Instance of the StandardWorldModel class

➢ Accessed through the global attribute model

➢ Useful methods in the StandardWorldModel class

int getDistance(EntityID first, EntityID second)

int getDistance(StandardEntity first, StandardEntity second)

Return the Euclidean distance between two entities

59

5 8

9 1

3

Object - World

➢ Useful methods in the StandardWorldModel class

Collection<StandardEntity> getEntitiesOfType(StandardEntityURN...urns)

Return the set of entities of one or more types

Collection<StandardEntity> getObjectsInRange(EntityID entity, int range)

Collection<StandardEntity> getObjectsInRange(StandardEntity entity, int range)

Return the set of entities inside a range

Collection<StandardEntity> getObjectsInRectangle(int x1, int y1, int x2, int y2)

Return the set of entities inside the coordinates (x1, y1) (x2, y2)

60

Object - Building

➢ Represent buildings

➢ Extend the Area class

➢ Instance of Building class

61

Property Description

ID Unique identification number of the building

Brokenness Amount of damage inflicted in the building

Fieryness Fire intensity

Temperature Temperature

TotalArea Total area including all floors

Blockades List of blockades in the building area

Object - Building

➢ Useful methods in the Building class

List<EntityID> getNeighbours()

Return list of neighbor entities

int getBrokenness()

Return the damage suffered by the building

int getFieryness()

Return fire intensity

62

0 → UNBURNT 5 → MINOR_DAMAGE

1 → HEATING 6 →

MODERATE_DAMAGE

2 → BURNING 7 → SEVERE_DAMAGE

3 → INFERNO 8 → BURNT_OUT

4 → WATER_DAMAGE

Object - Building

➢ Useful methods in the Building class

int getTemperature()

Return temperature

int getTotalArea()

Return total area

int getBuildingCode()

Return type of building material

63

Code Type Transmission Rate

0 Wood 1,8

1 Steel 1,8

2 Concrete 1,0

Object - Building

➢ Useful methods in the Building class

List<EntityID> getBlockades()

Return the list of blockades in the building area

64

Object - Road

➢ Represent the road ways

➢ Extend the Area class

➢ Instance of Road class

65

Property Description

ID Unique identification number of the road

Blockades List of blockades in the road area

Object - Road

➢ Useful methods in the Road class

List<EntityID> getBlockades()

Return the list of blockades in the road area

List<EntityID> getNeighbours()

Return the list of neighbor entities

66

Object - Blockade

➢ Represent blockades

➢ Instance of the Blockade class

67

Property Description

ID Unique identication number of the blockade

Position Entity where the blockade is located

RepairCost Cost to clear (repair) the blockade

Object - Blockade

➢ Useful methods in the Blockade class

EntityID getPosition()

Return the EntityID of the entity where the blockade is located

int getRepairCost()

Return the repair cost of the blockade

68

Agent Behavior

69

Agent Types

➢ Civilian

➢ Rescue Agents

70

Platoon

Ambulance Team

Fire Brigade

Police Force

Center

Ambulance Center

Fire Station

Police Office

Minimal Class Structure

public class [NAME_CLASS_AGENT] extends StandardAgent<[StandardEntity]>{

@Override

protected EnumSet<StandardEntityURN> getRequestedEntityURNsEnum(){

return EnumSet.of(StandardEntityURN.[StandardEntityURN]);

}

@Override

protected void postConnect(){

}

@Override

protected void think(int time, ChangeSet changed, Collection<Command> heard){

}

}

71

Standard Entity

➢ StandardEntityURN

➢ CIVILIAN

➢ AMBULANCE_TEAM

➢ AMBULANCE_CENTRE

➢ FIRE_BRIGADE

➢ FIRE_STATION

➢ POLICE_FORCE

➢ POLICE_OFFICE

72

Agent Methods

➢ protected EnumSet<StandardEntityURN> getRequestedEntityURNsEnum()

Return the agent type implemented

➢ protected void postConnect()

Method executed once the agent connects to the simulator kernel before the

simulation begins. Used to perform information pre-processing.

The agents have a time limit to finish executing the postConnect method

(default: 5 minutes)

73

Agent Methods

➢ protected void think(int time, ChangeSet changed, Collection<Command>

heard)

Implement the agent behavior. Called every simulation cycle.

Limited time to execute (default 30 seconds)

74

Accessing Configuration Parameters

this.config.getIntValue([key])

where, [key] is the name of the parameter in the configuration file

• Example

this.config.getIntValue(“perception.los.max_distance”)

this.config.getIntValue(“fire.extinguish.max_distance”)

75

Example AmbulanceTeam

public class ExemploAT extends StandardAgent<AmbulanceTeam>{

@Override

protected EnumSet<StandardEntityURN> getRequestedEntityURNsEnum(){

return EnumSet.of(StandardEntityURN.AMBULANCE_TEAM);

}

@Override

protected void postConnect(){

int max_distance = this.config.getIntValue(“perception.los.max_distance”);

...

}

@Override

protected void think(int time, ChangeSet changed, Collection<Command> heard){

...

}

}

76

StandardAgent

➢ Agents extend the StandardAgent

77

Property Description

ID Unique identification number of the agent

X Agent X coordinate in the map

Y Agent Y coordinate in the map

Buriedness How much the agent is buried

HP Health index

Damage Health index rate of decrease

Position Entity where the agent is located

StandardAgent

➢ Useful methods in the StandardAgent class

int getBuriedness()

Return the amount the agent is buried

int getHP()

Return the agent’s health index. Zero means the agent is dead.

int getDamage()

Retunr the health index rate of decrease

78

StandardAgent

➢ Useful methods in the StandardAgent class

EntityID getPosition()

Return the EntityID of the entity where the agent is located

Pair<Integer,Integer> getLocation(WorldModel<? extends StandardEntity> world)

Return the X and Y coordinate of the agent in the map

79

Capabilities

Type Capability

Civilian sense, hear, say, move

Ambulance Team sense, hear, say, move, communicate via radio, rescue, load, unoad

Fire Brigade sense, hear, say, move, communicate via radio, rescue, extinguish,

rest

Police Force sense, hear, say, move, communicate via radio, clear

Ambulance Centre hear, communicate via radio

Fire Station hear, communicate via radio

Police Office hear, communicate via radio

80

Capabilities

➢ Sense

Enable the agent to sense the environment inside a certain range. The

perceptions are received through the changed parameter (ChangeSet class) in

the think method.

The key perception.los.max_distance in the perception.cfg file defines the

perception range.

ChangeSet class method

➢ Set<EntityID> getChangedEntities()

Return the set of entities that changed in the last simulation cycle inside the

range of perception.

81

Capabilities

➢ Hear

Enable the agent to receive message from other agents via radio

communication. The messages are received through the heard parameter

(Command class) in the think method.

Further details in Agent Communication

82

Capabilities

➢ Say

Enable the agent to send a short-distance voice message.

➢ Speak

Enable the agent to broadcast a long-distance message.

Further details in Agent Communication

83

Capabilities

➢ Move

Enable the agent to move in the environment.

void sendMove(int time, List<EntityID> path)

Command to move the agent through a sequence of entities

void sendMove(int time, List<EntityID> path, int destX, int destY)

Command to move the agent through a sequence entities or a specific X and Y

coordinate in the map

84

Capabilities

➢ Clean

Enable the agent to remove a blockade.

void sendClear(int time, EntityID target)

Command to clean a specific blockade (target)

void sendClear(int time, int X, int Y)

Command to clean a specific X and Y coordinate

85

Capabilities

➢ Extinguish

Enable the agent to throw water in a building.

void sendExtinguish(int time, EntityID target, int power)

Command used to throw a specific quatity of water (power) in the building

(target)

86

Capabilities

➢ Rest

Enable the agent to rest on top of a refuge to fill up its water tank.

void sendRest(int time)

Command used to indicate that the agent wants to fill up its water tank when

applied positioned on a refuge

87

Capabilities

➢ Rescue

Enable the agent to unbury a buried agent.

void sendRescue(int time, EntityID target)

Command to unbury a buried agent (target)

88

Capabilities

➢ Load

Enable to load an agent for transport.

void sendLoad(int time, EntityID target)

Command to load an unburied agent (target)

89

Capabilities

➢ Unload

Enableto unload a transported agent.

void sendUnload(int time)

Command to unload an agent

90

Hands-on

1. Change the FireBrigade behavior (sampleagent.FireBrigade) to prioritize the

rescue of Civilians

❑ Look at the getTargets() method

2. Change the AmbulanceTeam behavior (sampleagent.AmbulanceTeam) to
prioritize the rescue of agents with greater HP

❑ Look at the getTargets() method

❑ Currently the priority is based on distance

91

Agent Communication

92

Types of Communication

➢ Voice

➢ Limited communication distance

➢ Single communication channel (id 0)

➢ Radio Communication

➢ No communication distance

➢ Require subscription to the communication channel

➢ Limited number of channels an agent can subscribe

93

Capabilities

➢ Hear

Enable the agent to receive message from other agents via radio

communication. The messages are received through the heard parameter

(Command class) in the think method.

94

Capabilities

➢ Say

Enable the agent to send a short-distance voice message. The deafult distance

is 30 meters.

void sendSay(int time, byte[] data)

Command used to send a voice message to the environment.

95

Capabilities

➢ Speak

Enable the agent to broadcast a long-distance message.

void sendSubscribe(int time, int... channels)

Command to subscribe to a communication channel.

void sendSpeak(int time, int channel, byte[] data)

Command to send a message in a communication channel.

96

Thank You!!

97

